General Physics:

1	For constant motion:	$v=\frac{s}{t}$	' v ' is the velocity in m / s, ' s ' is the distance or displacement in meters and 't' is the time in seconds
2	For acceleration ' a '	$a=\frac{v-u}{t}$	u is the initial velocity, v is the final velocity and t is the time.
3	Graph	Area of a rectangular shaped graph $=$ base \times height . Area of triangular shaped graph $=$ $1 / 2 \times$ base \times height	In velocity-time graph the area under the graph is the total distance covered by an object.
4	Weight and mass	$w=m \times g$	w is the weight in newton (N), m is the mass in kg and g is acceleration due to gravity $=10$ $\mathrm{m} / \mathrm{s}^{2}$
5	Density ' ρ ' in $\mathrm{kg} / \mathrm{m}^{3}$	$\rho=\frac{m}{V}$	m is the mass and V is the volume
6	Force F in newton (N)	$F=m \times a$	m is the mass and a is the acceleration
7	Terminal Velocity	Weight of an object (downward) = air resistance (upwards)	
8	Hooke's Law	$F=k \times x$	F is the force, x is the extension in meters and k is the spring constant.
9	Moment of a force in N.m	moment of force $=F \times d$	F is the force and d is the distance from the pivot
10	Law of moment or equilibrium:	Total clockwise moment $=$ total anticlockwise moment$\Rightarrow F_{1} \times d_{1}=F_{2} \times d_{2}$	
11	Work done W joules (J)	$W=F \times d$	F is the force and d is the distance covered by an object
12	Kinetic Energy E_{k} in joules (J)	$E_{k}=\frac{1}{2} \times m \times v^{2}$	m is the mass (kg) and v is the velocity (m / s)
13	Potential Energy E_{p} in joules (J)	$E_{p}=m \times g \times h$	m is the mass (kg) and g is the acceleration due to gravity and h is the height from the ground.
14	Law of conservation of energy:	$\begin{aligned} & \text { Loss of } E_{p}=\text { gain of } E_{k} \\ & m \times g \times h=\frac{1}{2} \times m \times v^{2} \end{aligned}$	
15	Power in watts (W)	$\begin{gathered} P=\frac{\text { work done }}{\text { time taken }} \\ P=\frac{\text { Energy transfer }}{\text { time taken }} \end{gathered}$	Power is the rate of doing work
16	Pressure p in pascal (Pa)	$p=\frac{F}{A}$	F is the force in newton (N) and A is the area in m^{2}
17	Pressure p due to liquid	$p=\rho \times g \times h$	ρ is the density in $\mathrm{kg} / \mathrm{m}^{3}, g$ is the acceleration due to garvity and h is the height or depth of liquid in meters.
18	Atmospheric pressure	$P=760 \mathrm{mmHg}=76 \mathrm{~cm} \mathrm{Hg}=1.01 \times 10^{5} \mathrm{~Pa}$	

Thermal Physics:

1	Pressure and volume relationship (Boyle's law)	$\begin{array}{r} p V=\text { constant } \\ p_{1} \times V_{1}=p_{2} \times V_{2} \end{array}$	p_{1} and p_{2} are the two pressures in Pa and V_{1} and V_{2} are the two volumes in m^{3}
2	Thermal Expansion (Linear)	$\Delta L=\alpha \times L_{o} \times \Delta \theta$ L_{o} is the original length in meters, $\Delta \theta$ is the change in temperature in ${ }^{\circ} \mathrm{C}$, ΔL is the change in length in meters $\left(L_{l^{-}} L_{o}\right)$ and α is the linear expansivity of the material	
3	Thermal Expansion (Cubical)	$\Delta \mathrm{V}=\gamma \mathrm{Vo} \Delta \theta$ V_{o} is the original volume in m^{3}, $\Delta \theta$ is the change in temperature in ${ }^{\circ} \mathrm{C}$, ΔV is the change in volume in $m^{3}\left(V_{I}-V_{o}\right)$ and γ is the cubical expansivity of the material.	
4	Relationship between linear and cubical expansivities	$\gamma=3 \alpha$	
5	Charle's Law: Volume is directly proportional to absolute temperature $V \propto T$	$\begin{gathered} \frac{V}{T}=\text { constant } \\ \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \end{gathered}$	V is the volume in m^{3} and T is the temperature in Kelvin (K).
6	Pressure Law: Pressure of a gas is directly proportional to the absolute temperature $p \propto T$	$\begin{gathered} \frac{p}{T}=\text { constant } \\ \frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}} \end{gathered}$	p is the pressure in Pa and T is the temperature in Kelvin (K).
7	Gas Law: $\frac{p V}{T}=\text { constant }$	$\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}}$	In thermal physics the symbol θ is used of celsius scale and T is used for Kelvin scale.
8	Specific Heat Capacity: The amount of heat required to raise the temperature of 1 kg mass by $1^{\circ} C$.	$c=\frac{Q}{m \times \Delta \theta}$	c is the specific heat capacity in $\mathrm{J} / \mathrm{kg}^{\circ} \mathrm{C}$, Q is the total heat in joules (J), m is the mass in kg and $\Delta \theta$ is the change in temperature
9	Thermal Capacity: amount of heat require to raise the temperature of a substance of any mass by $1^{\circ} \mathrm{C}$	$\begin{aligned} & \hline \text { Thermal capacity }=m \times c \\ & \text { Thermal capacity }=\frac{Q}{\Delta \theta} \end{aligned}$	The unit of thermal capacity is $J^{\prime} C$.
10	Specific latent heat of fusion (from Ice to liquid)	$L_{f}=\frac{Q}{m}$	L_{f} is the specific latent heat of fusion in J / kg or J / g, Q is the total heat in joules (J), m is the mass of liquid change from ice in kg or g.
11	Specific latent heat of vaporization (from liquid to vapour)	$L_{v}=\frac{Q}{m}$	L_{v} is the specific latent heat of vaporization in J / kg or J / g, Q is the total heat in joules (J), m is the mass of vapour change from liquid in kg or g .
12	Thermal or heat transfer	In solid $=$ conduction In liquid and gas $=$ convection and also convection current In vacuum $=$ radiation	
13	Emitters and Radiators	Dull black surface $=$ good emitter, good radiator, bad reflector Bright shiny surface $=$ poor emitter, poor radiator, good reflector	

Waves, light and sound:

1	Wave equation 1	$v=f \times \lambda$	v is the speed of wave in m / s fis the frequency in Hz λ is the wavelength in meters
2	Wave equation 2	$f=\frac{1}{T}$	T is the time period of wave in seconds
3	Movement of the particles of the medium	Longitudinal waves => back and forth in the direction of the waves Transverse waves $=>$ perpendicular to the direction of the waves	
4	Law of reflection	Angle of incidence $i=$ angel of reflectionangle $i^{o}=$ angle r^{o}	
5	Refraction	From lighter to denser medium \rightarrow light bend towards the normal From denser to lighter medium \rightarrow light bend away from the normal	
6	Refractive index n	$n=\frac{\sin \angle i}{\sin \angle r}$	Refractive index has no unit
7	Refractive index n	$n=\frac{\text { speed }}{\text { speed } o}$	$\frac{\text { in air or vacuum }}{\text { any other medium }}$
8	Image from a plane mirror	Virtual, upright, same sis same distance from the	erally inverted, ide
9	Image from a convex lens	When close: virtual, ent When far: real, small,	
10	Image from a concave lens	Virtual, upright, small	
11	Critical angle	When light goes from dens angle at which the refle	hter medium, the incident is 90°,is called critical angle.
12	Total internal reflection(TIR)	When light goes from d bend inside the same m	hter medium, the refracted ray this is called (TIR)
13	Electromagnetic Spectrum: Gamma rays $\leftrightarrow X$-rays \leftrightarrow	\rightarrow this way the frequency $V \leftrightarrow$ Visible light $\leftrightarrow I R$	and wavelength increases waves \leftrightarrow Radio waves
14	Colours of visible spectrum (light)	VIBGYOR (from bottom	
15	Speed of light	In air: $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$	In glass: $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
16	Light wave	Electromagnetic waves	
17	Sound wave	longitudinal waves particle of the medium particles of the medium	\rightarrow compression \rightarrow rarefaction
18	Echo	$v=\frac{2 \times d}{t}$	v is the speed of sound waves, d is the distance in meters between source and the reflection surface and t is the time for echo
19	Properties of sound waves	Pitch means the frequency of the wave Loudness means the amplitude of the wave	
20	Speed of sound waves	Air : $330-340 \mathrm{~m} / \mathrm{s}$ Water: $1400 \mathrm{~m} / \mathrm{s}$ Concrete : $5000 \mathrm{~m} / \mathrm{s}$ Steel: $6000-7000 \mathrm{~m} / \mathrm{s}$	

Electricity and magnetism:

1	Ferrous Materials	Attracted by magnet and can be magnetized		Eg. iron, steel, nickel and cobalt
2	Non-ferrous materials	Not attracted by magnet and cannot be magnetized		copper, silver, aluminum, wood, glass
3	Electric field intensity	force exerted by the field on a unit charge placed at a point around another charge		E is the electric field intensity in N / C $E=\frac{F}{q}$
4	Current: Rate of flow of charges in a conductor		$I=\frac{Q}{t}$	I is the current in amperes (A), Q is the charge in coulombs (C) t is the time in seconds (s)
5	Current	In circuits the current always choose the easiest path		
6	Ohms law	Voltage across the resistor is directly proportional to current, $V \propto I$ or$\frac{V}{l}=R$		V is the voltage in volts (V), I is the current in amperes (A) and R is resistance in ohms (Ω)
7	Voltage	Energy per unit charge$V=\frac{\text { Energy }}{Q}$		Q is the charge in coulombs (C), V is the voltage in volts (V) Energy is in joules (J)
8	E.M.F. Electromotive force	$\begin{aligned} & \text { e.m.f. }=\text { lost volts }+ \text { terminal potential difference } \\ & E M F=I r+I R \end{aligned}$		
9	Resistance and resistivity	$R=\rho \frac{L}{A}$ ρ is the resistivity of resistor in $\Omega . m$		R is the resistance a resistor, L is the length of a resistor in meters A is the area of cross-section of a resistor in m^{2}
10	Circuit	In series circuit \rightarrow the current stays the same and voltage divides In parallel circuit \rightarrow the voltage stays the same and current divides		
11	Resistance in series	$R=R_{1}+R_{2}+R_{3}$		R, R_{1}, R_{2} and R_{3} are resistances of resistor in ohms
12	Resistance in parallel	$\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$		
13	Potential divider		$\frac{V_{1}}{V_{2}}=\frac{R_{1}}{R_{2}}$	
14	Potential divider		$=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) \times V$	$V_{1}=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) \times V$
15	Power	$P=I \times V$	$P=I^{2} \times R \quad P=\frac{V^{2}}{R}$	P is the power in watts (W)
16	Power	$P=\frac{\text { Energy }}{\text { time }}$		The unit of energy is joules (J)
17	Transformer	$\frac{V_{p}}{V_{s}}=\frac{n_{p}}{n_{s}}$		V_{p} is the voltage in primary coil, V_{s} is the voltage in secondary coil n_{p} is the no of turns in primary and n_{s} is the no of turns in secondary
18	Transformer	$\begin{aligned} \text { Power of primary coil } & =\text { power of secondary coil } \\ P_{p} & =P_{s} \\ I_{p} \times V_{p} & =I_{s} \times V_{s} \\ \frac{V_{p}}{V_{s}} & =\frac{I_{s}}{I_{p}} \end{aligned}$ I_{p} is the current in primary coil and I_{s} the current in secondary coil		
19	Cathode rays	Stream of electrons emitted from heated metal (cathode). This process is called thermionic emission.		
20				

Atomic Physics:

$\left.$| 1 | Alpha particles
 α-particles | Helium nucleus
 Stopped by paper
 Highest ionization potential | |
| :--- | :--- | :--- | :--- |
| 2 | Beta-particles
 β-particles | Fast moving electrons
 Stopped by aluminum
 Less ionization potential | Eamma-particles
 γ-rays |
| 4 | Electromagnetic radiation
 Only stopped by thick a sheet of lead
 Least ionization potential | Halflife | Time in which the activity or mass becomes half |\quad| A is the total no of |
| :--- |
| protons and neutrons |
| Z is the total no of protons | \right\rvert\,

