General Physics:

1	For constant motion:		'v' is the velocity in m/s, 's' is the
		$v = \frac{s}{-}$	distance or displacement in
		t t	meters and 't' is the time in
2		22 24	seconds
2	For acceleration 'a'	$a = \frac{v - u}{t}$	u is the initial velocity, v is the
3	Graph	l Area of a rectangular shaped graph	In velocity time graph the grag
5	Graph	– base × beight	in verocity-time graph the area
		- buse < height.	distance covered by an object
		Area of triangular shaped graph = $-$	
		$\frac{1}{2} \times base \times height$	
4	Weight and mass		w is the weight in newton (N), m
		$w - m \times a$	is the mass in kg and g is
		$w = m \wedge g$	acceleration due to gravity = 10
			m/s^2
5	Density 'ρ' in kg/m ³	$\rho = \frac{m}{V}$	<i>m</i> is the mass and <i>V</i> is the volume
6	Force F in newton (N)	$F = m \times a$	m is the mass and a is the
			acceleration
7	Terminal Velocity	Weight of an object(downward	l) = air resistance (upwards)
8	Hooke's Law		<i>F</i> is the force, <i>x</i> is the extension in
		$F = k \times x$	meters and k is the spring
0			constant.
9	Moment of a force in N.m	$moment of force = F \times d$	<i>F</i> is the force and <i>d</i> is the distance from the pivot
10	Law of moment or	Total clockwise moment = to	otal anticlockwise moment
	equilibrium:	$=>F_1\times d_1$	$=F_2 \times d_2$
11	Work done W joules (J)	$W = F \times d$	F is the force and d is the
			distance covered by an object
12	Kinetic Energy E_k in	$F_{-} - \frac{1}{-} \times m \times m^2$	m is the mass(kg) and v is the
	joules (J)	$E_k - \frac{1}{2} \times m \times v$	velocity (m/s)
13	Potential Energy E_p in	$E_m = m \times q \times h$	m is the mass (kg) and g is the
	joules (J)	p s g s	acceleration due to gravity and h
14			is the height from the ground.
14	Law of conservation of	Loss of $E_p = gain of E_k$	
	energy.	$m \times g \times h = \frac{1}{2} \times m \times v^2$	
		2	
15	Power in watts (W)	_ work done	Power is the rate of doing work
		$P = \frac{1}{time \ taken}$	
		Energy transfer	
		P =	
16	Pressure p in pascal (Pa)	$n - \frac{F}{r}$	F is the force in $newton(N)$ and A
		$p - \overline{A}$	is the area in m^2
17			a is the domaits in bakes' a is the
	Pressure p due to liquid		p is the density in kg/m, g is the
	Pressure p due to liquid	$p = \rho \times q \times h$	acceleration due to garvity and h
	Pressure p due to liquid	p = ho imes g imes h	acceleration due to garvity and h is the height or depth of liquid in
10	Pressure p due to liquid	$p = \rho \times g \times h$	<i>b</i> is the density in kg/m, g is the acceleration due to garvity and h is the height or depth of liquid in meters.

Thermal Physics:

1	Pressure and volume relationship	<i>pV=constant</i>	p_1 and p_2 are the two pressures in Pa
	(Boyle's law)	$p_1 \times V_1 = p_2 \times V_2$	and V_1 and V_2 are the two volumes in m^3
2	Thermal Expansion (Linear)	$\Delta L = \alpha \times L_o \times \Delta \theta$	
		L_o is the original length in	n meters,
		$\Delta heta$ is the change in tempe	erature in ^o C,
		ΔL is the change in length	h in meters $(L_1 - L_o)$ and
		lpha is the linear expansivity	v of the material
3	Thermal Expansion (Cubical)	$\Delta V = \gamma Vo \Delta \theta$	
		V_o is the original volume i	$in m^3$,
		$\Delta \theta$ is the change in tempe	erature in ^{o}C ,
		ΔV is the change in volum	ne in m^3 (V ₁ - V _o) and
		γ is the cubical expansivity of the material.	
4	Relationship between linear and	$\gamma = 3\alpha$	
	cubical expansivities		
5	Charle's Law:	V	V is the volume in m^3 and T is the
	<i>Volume is directly proportional to</i>	$\frac{1}{T} = constant$	temperature in Kelvin (K).
	absolute temperature	$\frac{V_1}{V_1} - \frac{V_2}{V_2}$	
	$V \propto T$	$T_1 - T_2$	
6	Pressure Law:	$\frac{p}{-} = constant$	p is the pressure in Pa and T is the
	Pressure of a gas is directly	$T $ $p_1 $ p_2	temperature in Kelvin (K).
	proportional to the absolute	$\frac{\frac{P}{T}}{T} = \frac{\frac{P}{T}}{T}$	
	temperature	I ₁ I ₂	
7	$p \propto T$	m V m V	
7	Gas Law:	$\frac{p_1v_1}{p_1} = \frac{p_2v_2}{p_2}$	In thermal physics the symbol θ is used
	$\frac{pv}{r} = constant$	$T_1 \qquad T_2$	of celsius scale and I is used for Kelvin
0	T Specific Heat Canacity	0	Scale. I_{ka} specific heat cancella in $I_{ka}^{0}C$
0	The amount of heat required to	$c = \frac{Q}{M}$	C is the specific near capacity in J/kg C,
	The amount of near required to raise the temperature of 1 kg mass	$m \times \Delta \theta$	Q is the total heat in joures (J), m is the mass in ke and
	Thise the temperature of 1 kg mass $h_{\rm V}$ 1°C		ΛA is the change in temperature
9	Thermal Capacity: amount of heat	Thermal capacity-m×c	The unit of thermal canacity is $L^{\rho}C$
	require to raise the temperature of	0	The unit of thermal cupacity is 5/ C.
	a substance of any mass by $1^{\circ}C$	Thermal capacity = $\frac{c}{\Delta \theta}$	
10	Specific latent heat of fusion	Q	$L_{\rm f}$ is the specific latent heat of fusion in
	(from Ice to liquid)	$L_f = \frac{1}{m}$	J/kg or J/g,
			<i>Q</i> is the total heat in joules (<i>J</i>),
			<i>m</i> is the mass of liquid change from ice
			in kg or g.
11	Specific latent heat of vaporization	, Q	L_{v} is the specific latent heat of
	(from liquid to vapour)	$L_v = \frac{1}{m}$	vaporization in J/kg or J/g,
			Q is the total heat in joules (J),
			m is the mass of vapour change from
			liquid in kg or g.
12	Thermal or heat transfer	In solid = conduction	
		In liquid and gas = conve	ection and also convection current
		In vacuum = radiation	
13	Emitters and Radiators	Dull black surface = good emitter, good radiator, bad reflector	
		<i>Bright shiny surface = poor emitter, poor radiator, good reflector</i>	

Waves, light and sound:

1	Wave equation 1	$v = f imes \lambda$	v is the speed of wave in m/s
			f is the frequency in Hz
			λ is the wavelength in meters
2	Wave equation 2	1	<i>T</i> is the time period of wave in
	1	$f = \frac{1}{T}$	seconds
3	Movement of the particles	Longitudinal waves=> back and j	forth in the direction of the
	of the medium	waves	, i i i i i i i i i i i i i i i i i i i
		Transverse waves=> perpendicul	ar to the direction of the waves
4	Law of reflection	Angle of incidence $i = angel of regimes i = angel$	flection
		angle $i^o =$	angle r ^o
5	Refraction	From lighter to denser medium –	light bend towards the normal
		From denser to lighter medium –	light bend away from the
		normal	
6	Refractive index n	sin∠i	Refractive index has no unit
		$n = \frac{1}{\sin 2r}$	
7	Refractive index n	speed of light	in air or vacuum
		$n = \frac{1}{\text{speed of light in any other medium}}$	
8	Image from a plane mirror	Virtual, upright, same size and laterally inverted,	
		same distance from the mirror inside	
9	Image from a convex lens	When close: virtual, enlarge, upright	
		When far: real, small, upside down	
10	Image from a concave lens	Virtual, upright, small	
11	Critical angle	When light goes from denser to lighter medium, the incident	
		angle at which the reflected angle is 90° , is called critical angle.	
12	Total internal	When light goes from denser to lighter medium, the refracted ray	
	reflection(TIR)	bend inside the same medium then this is called (TIR)	
13	Electromagnetic Spectrum:-	\rightarrow this way the frequency decreases and wavelength increases	
	$Gamma \ rays \leftrightarrow X - rays \leftrightarrow U$	$JV \leftrightarrow V$ isible light $\leftrightarrow IR \leftrightarrow M$ icro waves $\leftrightarrow Radio waves$	
14	Colours of visible	VIBGYOR (from bottom-up)	
	spectrum (light)	0	0
15	Speed of light	In air: $3 \times 10^{\circ}$ m/s	In glass: $2 \times 10^{\circ} m/s$
16	Light wave	Electromagnetic waves	
17	Sound wave	longitudinal waves	
		particle of the medium come close \rightarrow compression	
		particles of the medium far apart \rightarrow rarefaction	
18	Echo	$n = \frac{2 \times d}{2}$	v is the speed of sound waves,
		v = t	d is the distance in meters
			between source and the
			reflection surface and
			t is the time for echo
19	Properties of sound waves	Pitch means the frequency of the wave	
		Loudness means the amplitude of	the wave
20	Speed of sound waves	Air : 330-340 m/s	
		Water: 1400 m/s	
		Concrete : 5000 m/s	
		Steel: 6000 – 7000 m/s	

Electricity and magnetism:

1	Ferrous Materials	Attracted by magnet and can be magnetized	Eg. iron, steel, nickel and cobalt
2	Non-ferrous materials	Not attracted by magnet and cannot be magnetized	copper, silver, aluminum, wood, glass
3	Electric field intensity	force exerted by the field on a unit charge placed at a point around another charge	E is the electric field intensity in N/C $E = \frac{F}{q}$
4	<i>Current: Rate of flow of charges in a conductor</i>	$I = \frac{Q}{t}$	I is the current in amperes (A) , Q is the charge in coulombs (C) t is the time in seconds (s)
5	Current	In circuits the current always choose	the easiest path
6	Ohms law	Voltage across the resistor is directly proportional to current, $V \ltimes I$ or $\frac{V}{I} = R$	V is the voltage in volts (V), I is the current in amperes (A) and R is resistance in ohms (Ω)
7	Voltage	Energy per unit charge $V = \frac{Energy}{Q}$	Q is the charge in coulombs (C), V is the voltage in volts (V) Energy is in joules (J)
8	E.M.F. Electromotive force	e.m.f. = lost volts + terminal potentia EMF=Ir+IR	al difference
9	Resistance and resistivity	$R = \rho \frac{L}{A}$ ρ is the resistivity of resistor in Ω .m	<i>R</i> is the resistance a resistor, <i>L</i> is the length of a resistor in meters <i>A</i> is the area of cross-section of a resistor in m ²
10	Circuit	In series circuit \rightarrow the current stays t In parallel circuit \rightarrow the voltage stay	he same and voltage divides as the same and current divides
11	Resistance in series	$R = R_1 + R_2 + R_3$	
12	Resistance in parallel	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ $R, R_1, R_2 and R_3 are resistances of resistor in ohms$	
13	Potential divider	$\frac{V_1}{V_2} = \frac{R_1}{R_2}$	
14	Potential divider	$V_2 = \left(\frac{R_2}{R_1 + R_2}\right) \times V$	$V_1 = \left(\frac{R_1}{R_1 + R_2}\right) \times V$
15	Power	$P = I \times V$ $P = I^2 \times R$ $P = \frac{V^2}{R}$	<i>P</i> is the power in watts (W)
16	Power	$P = \frac{Energy}{time}$	The unit of energy is joules (J)
17	Transformer	$\frac{V_p}{V_s} = \frac{n_p}{n_s}$	V_p is the voltage in primary coil, V_s is the voltage in secondary coil n_p is the no of turns in primary and n_s is the no of turns in secondary
18	Transformer	Power of primary coil = power of secondary coil $P_p = P_s$ $I_p \times V_p = I_s \times V_s$ $\frac{V_p}{V_s} = \frac{I_s}{I_p}$ $I_p \text{ is the current in primary coil and } I_s \text{ the current in secondary coil}$	
19	Cathode rays	Stream of electrons emitted from heated metal (cathode). This process is called thermionic emission.	
20			

Atomic Physics:

1	Alpha particles	Helium nucleus	
	a-particles	Stopped by paper	
		Highest ionization potential	
2	Beta-particles	Fast moving electrons	
	β -particles	Stopped by aluminum	
		Less ionization potential	
3	Gamma-particles	Electromagnetic radiation	
	γ-rays	Only stopped by thick a sheet of lead	
		Least ionization potential	
4	Half-life	Time in which the activity or mass becomes half	
5	Atomic symbol	Av	A is the total no of
		$\frac{1}{Z}\Lambda$	protons and neutrons
		2	Z is the total no of protons
6	Isotopes	Same number of protons but different number of	
		neutrons	