

ALTERNATIVE TO PRACTICAL - P6 SAFETY PRECAUTIONS

- Live wires should not be touched.
- · Hot objects should not be touched with bare hands gloves should be used
- Circuit connections should be checked and approved by the teacher and then only the circuit should be switched on
- While changing components of the circuit the power should be switched so that one should not experience electric shocks.
- Safety googles, gloves and other safety components should be used while handling experiments.
- While handling a mercury thermometer one should take care of the mercury spills.

SPECIFIC HEAT CAPACITY

- Apparatus: Solid block, Drill, Thermometer, Heater (of known power), Cotton wool.
- Procedure:
 - Drill two holes in the block.
 - Measure the mass of the block.
 - Place the heater in one of the blocks, the thermometer in the other.
 - Use cotton wool to properly insulate/lag the block.
 - Note the initial temperature of block and turn on heater for *x* seconds
 - Calculate Heat Energy Supplied by heater using formula Q=Pt.
 - Note the final temperature of block.
 - Specific heat capacity $= \frac{Q}{m \times \Delta t}$.

COOLING RATE OF WATER

- Apparatus: Heater, Thermometer, Beaker, Stopwatch, Beaker containing Water.
- Procedure:
 - Place heater into beaker and turn it on to raise the temperature of water to 60°C
 - Stir the contents of the water and place thermometer into the beaker.
 - Note the starting temperature and turn on the stopwatch.
 - Take readings of the thermometer and stopwatch at regular intervals (e.g. 60 sec).
 - Draw up a table and plot a graph to conclude your experiment.

PICKING A BETTER INSULATOR

• Apparatus: Two large cans, two small cans, cotton wool, polystyrene beads, boiling water,

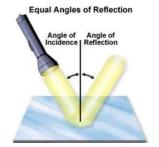
thermometers, stopwatch

- Procedure:
 - Put the small cans into the large cans and insulate the small can with (i) cotton wool and
 - (ii) polystyrene beads
 - Pour boiling water into the small cans and place the thermometers in them.
 - Start the stopwatch and take readings of temperature at regular intervals.
 - Record readings in a table for each insulator.
 - The small can that has the higher temperature over the fixed period is better insulated.
 - Hence, object that provides a less temperature loss over the period is the better insulator.

REFRACTION OF LIGHT

- Apparatus: Ray Box, Rectangular piece of glass, Plain paper, Pencil..
- Procedure:
 - Place the Plain paper below the rectangular piece of glass.
 - Project a ray towards the glass.
 - Make two points to mark the incident ray, two to mark the refracted ray and two to mark

the emergent ray.


- Join all the lines, measure the angles and calculate refractive index.
- Repeat with different angles; Snell's law shown.

REFLECTION OF LIGHT

• Apparatus: Pins, Mirror.

• Procedure:

- Shine beam from raybox to mirror
- Use the pencil to carefully mark two dots in the center of the incident and reflected rays.
- Join the dots and complete the ray
- Draw a normal and measure the angles.
- Angle i = Angle r, proving laws of reflection.

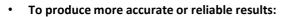
RESISTANCE AND TEMPERATURE

- Apparatus: Resistor, Battery, Connecting wires, Ammeter, Voltmeter, Oven.
- Procedure:
 - Make a circuit with the battery, connecting wires, ammeter and voltmeter, resistor.
 - Measure the resistance of the resistor using the formula R=V/I.
 - Heat the resistor in the oven. Place the resistor back into the circuit.
 - Measure the readings again and calculate R=V/I.
 - Draw up a conclusion about how the resistance increases as temperature increases.

SPEED OF SOUND

- Apparatus: Two observers, Gun, Stopwatch.
- Procedure:
 - Two observers are set apart at a known distance.
 - One observer has the gun, the other has the stopwatch.
 - Observer A fires the gun, Observer B starts the stopwatch when he sees the puff of smoke.
 - Observer B stops the stopwatch when he hears the sound and the time is noted.
 - Speed $=\frac{Distance}{Time}$ applied.
 - The observers swap positions and repeat the experiment.
 - The values are averaged and the speed of sound is obtained.

CENTRE OF MASS


- Centre of mass of a plane lamina:
 - Make a hole in the lamina.
 - Hang it so it can swing freely.
 - Hang a plumb line in the hole and mark the line it passes through.
 - Repeat the procedure again to get another line
 - Their intersection point is the center of mass.
- Stability of simple objects:
 - The position of the center of mass affects an object's stability. If the center of mass of an

object is low, it is less likely to tip if tilted.

• To increase stability: (i) Increase surface area (ii) make the object shorter.

IMPROVING ACCURACY

- Repeat experiment, to calculate average reading.
- Avoiding parallax error, look perpendicular to the ruler.
- If accuracy in measurement was asked, check for zero error.
- To draw an image created from lens:
 - Inverted from the original object.
 - Sides are multiplied by the magnification.
- Centre of mass experiment (with the lamina):
 - you view the string directly in front of card.

IMPROVING ACCURACY

- Minimizing heating effect of a current:
 - Lower current
 - Increase voltage
 - Add a lamp
 - Increase resistance of a resistor
- To increase accuracy of ray diagrams:
 - View bases of pins since pins may not be vertical
 - Keep pins further apart and use more pins
 - Avoid parallax, explain action and reason
 - Repeats and average

IMPROVING ACCURACY

- · Improvement made to experiments about heating/cooling effect and insulation
 - Same initial temperature.
 - Same volume of water.
 - Same shape and type of beaker.
 - Same room temperature.
 - Stirring the water in the beakers.
 - Record max. temperature
- Heat loss could be reduced by:
 - Insulation of beaker.
 - Covering beaker with a lid.

IMPROVING ACCURACY

- How to check if a rule is vertical:
 - Use of set square or protractor
 - Plumb line
 - Spirit Level
- Precautions taken in experiments about formation of images by a lens
 - Use a darkened area
 - Object and lens same height on bench
 - Take more readings
 - Avoiding parallax error in measurement, and look perpendicular to the ruler.
 - Object/lens/screen perpendicular to bench

IMPROVING ACCURACY

- Variables in experiments about springs and stretching effect:
 - Number of coils
 - Length of spring
 - Diameter\thickness of spring or wire
 - Selection of loads
- Improvement made to calculating circumference by string method
 - Avoid parallax error
 - Repeats and average
 - Thinner string
 - Parallel winding of springs

IMPROVING ACCURACY

- Precautions for circuit readings of I and V so that accurate:
 - For I specifically:
 - Limit current so that temp. doesn't increase
 - Use a tapping meter
 - For I and V: Switch off between readings.
- Fair test for pendulum experiments:
 - Length of pendulum
 - Shape of bob
 - No. of swings
 - Amplitude

IMPROVING ACCURACY

• Precautions and procedures in electrical experiments:

- Check for a zero error
- Tap the meter to avoid sticking
- Initially choose the highest range for the ammeter/voltmeter, then reduce the range for

the ammeter so that the deflection is almost full scale

- Always check polarities before closing the switch (completing the circuit)
- Always check that connections are clean.
- Switch off the current when not making a measurement.
- When measuring resistance use low currents/voltages to avoid heating and changing the

resistance you are measuring

INACCURACIES

- Why angle i is NOT equal to angle r in ray experiment:
 - Thickness of pins
 - Thickness of mirror
 - Protractor is not precise
- Inaccuracy of ray box method: thickness of rays.
- Inaccuracy of pin method: pins not straight, or too close, or thickness of lines drawn.
- Measuring 10 oscillations rather than 1:
 - Reduce human errors
 - Give more accurate value of time taken (T)
 - Gives an average of T

GRAPHS

• Drawing graphs:

- Label axis
- Choose a proper scale
- Well judged best fit line
- Thin and neat lines
- Measuring the gradient:
 - Draw a triangle on graph
 - Use clear lines
 - Triangle must be larger than half the line
- For 2 values to be directly proportional, graph of the values be a straight line from origin

