alternative to Practical - P6 SAFETY PRECAUTIONS

- Live wires should not be touched.
- Hot objects should not be touched with bare hands - gloves should be used
- Circuit connections should be checked and approved by the teacher and then only the circuit should be switched on
- While changing components of the circuit the power should be switched so that one should not experience electric shocks.
- Safety googles, gloves and other safety components should be used while handling experiments.
- While handling a mercury thermometer one should take care of the mercury spills.

SPECIFIC HEAT CAPACITY

- Apparatus: Solid block, Drill, Thermometer, Heater (of known power), Cotton wool.
- Procedure:
- Drill two holes in the block.
- Measure the mass of the block.
- Place the heater in one of the blocks, the thermometer in the other.
- Use cotton wool to properly insulate/lag the block.
- Note the initial temperature of block and turn on heater for x seconds
- Calculate Heat Energy Supplied by heater using formula Q=Pt.
- Note the final temperature of block.
- Specific heat capacity $=\frac{Q}{m \times \Delta t}$.

COOLING RATE OF WATER

- Apparatus: Heater, Thermometer, Beaker, Stopwatch, Beaker containing Water.

- Procedure:

- Place heater into beaker and turn it on to raise the temperature of water to $60^{\circ} \mathrm{C}$
- Stir the contents of the water and place thermometer into the beaker.
- Note the starting temperature and turn on the stopwatch.
- Take readings of the thermometer and stopwatch at regular intervals (e.g. 60 sec).
- Draw up a table and plot a graph to conclude your experiment.

PICKING A BETTER INSULATOR

- Apparatus: Two large cans, two small cans, cotton wool, polystyrene beads, boiling water, thermometers, stopwatch
- Procedure:
- Put the small cans into the large cans and insulate the small can with (i) cotton wool and (ii) polystyrene beads
- Pour boiling water into the small cans and place the thermometers in them.
- Start the stopwatch and take readings of temperature at regular intervals.
- Record readings in a table for each insulator.
- The small can that has the higher temperature over the fixed period is better insulated.
- Hence, object that provides a less temperature loss over the period is the better insulator.

REFRACTION OF LIGHT

- Apparatus: Ray Box, Rectangular piece of glass, Plain paper, Pencil..
- Procedure:
- Place the Plain paper below the rectangular piece of glass.
- Project a ray towards the glass.
- Make two points to mark the incident ray, two to mark the refracted ray and two to mark the emergent ray.
- Join all the lines, measure the angles and calculate refractive index.
- Repeat with different angles; Snell's law shown.

REFLECTION OF LIGHT

- Apparatus: Pins, Mirror.
- Procedure:
- Shine beam from raybox to mirror
- Use the pencil to carefully mark two dots in the center of the incident and reflected rays.
- Join the dots and complete the ray
- Draw a normal and measure the angles.
- Angle $\mathrm{i}=$ Angle r , proving laws of reflection.

RESISTANCE AND TEMPERATURE

- Apparatus: Resistor, Battery, Connecting wires, Ammeter, Voltmeter, Oven.
- Procedure:
- Make a circuit with the battery, connecting wires, ammeter and voltmeter, resistor.
- Measure the resistance of the resistor using the formula $\mathrm{R}=\mathrm{V} / \mathrm{I}$.
- Heat the resistor in the oven. Place the resistor back into the circuit.
- Measure the readings again and calculate $\mathrm{R}=\mathrm{V} / \mathrm{I}$.
- Draw up a conclusion about how the resistance increases as temperature increases.

SPEED OF SOUND

- Apparatus: Two observers, Gun, Stopwatch.
- Procedure:
- Two observers are set apart at a known distance.
- One observer has the gun, the other has the stopwatch.
- Observer A fires the gun, Observer B starts the stopwatch when he sees the puff of smoke.
- Observer B stops the stopwatch when he hears the sound and the time is noted.
- Speed $=\frac{\text { Distance }}{\text { Time }}$ applied.
- The observers swap positions and repeat the experiment.
- The values are averaged and the speed of sound is obtained.

CENTRE OF MASS

- Centre of mass of a plane lamina:
- Make a hole in the lamina.
- Hang it so it can swing freely.
- Hang a plumb line in the hole and mark the line it passes through.
- Repeat the procedure again to get another line
- Their intersection point is the center of mass.

- Stability of simple objects:

- The position of the center of mass affects an object's stability. If the center of mass of an object is low, it is less likely to tip if tilted.
- To increase stability: (i) Increase surface area (ii) make the object shorter.
- To produce more accurate or reliable results:
- Repeat experiment, to calculate average reading.
- Avoiding parallax error, look perpendicular to the ruler.
- If accuracy in measurement was asked, check for zero error
- To draw an image created from lens:
- Inverted from the original object.
- Sides are multiplied by the magnification.
- Centre of mass experiment (with the lamina):
- you view the string directly in front of card.

IMPROVING ACCURACY

- Minimizing heating effect of a current:
- Lower current
- Increase voltage
- Add a lamp
- Increase resistance of a resistor
- To increase accuracy of ray diagrams:
- View bases of pins since pins may not be vertical
- Keep pins further apart and use more pins
- Avoid parallax, explain action and reason
- Repeats and average

IMPROVING ACCURACY

- Improvement made to experiments about heating/cooling effect and insulation
- Same initial temperature.
- Same volume of water.
- Same shape and type of beaker.
- Same room temperature
- Stirring the water in the beakers.
- Record max. temperature
- Heat loss could be reduced by:
- Insulation of beaker
- Covering beaker with a lid.

IMPROVING ACCURACY

- How to check if a rule is vertical:
- Use of set square or protractor
- Plumb line
- Spirit Level
- Precautions taken in experiments about formation of images by a lens
- Use a darkened area
- Object and lens same height on bench
- Take more readings
- Avoiding parallax error in measurement, and look perpendicular to the ruler.
- Object/lens/screen perpendicular to bench

IMPROVING ACCURACY

- Variables in experiments about springs and stretching effect:
- Number of coils
- Length of spring
- Diameter\thickness of spring or wire
- Selection of loads
- Improvement made to calculating circumference by string method
- Avoid parallax error
- Repeats and average
- Thinner string
- Parallel winding of springs

IMPROVING ACCURACY

- Precautions for circuit readings of I and V so that accurate:
- For I specifically:
- Limit current so that temp. doesn't increase
- Use a tapping meter
- For I and V: Switch off between readings.
- Fair test for pendulum experiments:
- Length of pendulum
- Shape of bob
- No. of swings
- Amplitude
- Precautions and procedures in electrical experiments:
- Check for a zero error
- Tap the meter to avoid sticking
- Initially choose the highest range for the ammeter/voltmeter, then reduce the range for the ammeter so that the deflection is almost full scale
- Always check polarities before closing the switch (completing the circuit)
- Always check that connections are clean.
- Switch off the current when not making a measurement.
- When measuring resistance use low currents/voltages to avoid heating and changing the resistance you are measuring

INACCURACIES

- Why angle i is NOT equal to angle r in ray experiment:
- Thickness of pins
- Thickness of mirror
- Protractor is not precise
- Inaccuracy of ray box method: thickness of rays.
- Inaccuracy of pin method: pins not straight, or too close, or thickness of lines drawn.
- Measuring 10 oscillations rather than 1:
- Reduce human errors
- Give more accurate value of time taken (T)
- Gives an average of T

GRAPHS

- Drawing graphs:

- Label axis
- Choose a proper scale
- Well judged best fit line
- Thin and neat lines
- Measuring the gradient:
- Draw a triangle on graph
- Use clear lines
- Triangle must be larger than half the line
- For 2 values to be directly proportional, graph of the values be a straight line from origin

