1 (a (i) $18 \mathrm{~m} / \mathrm{s}$ B1
(ii) (0.90 s is) driver's time to react B1
(b) (i) $(\mathrm{a}=)(\mathrm{v}-\mathrm{u}) / \mathrm{t}$ OR $\Delta \mathrm{v} / \mathrm{t}$ OR either in words $\mathrm{OR}(18-0) / 3.1$ OR 18/3.1 $5.8 \mathrm{~m} / \mathrm{s}^{2}$ A1
ORValues from any correct points on graph(C1)
Answer dependent on accuracy of chosen points (A1)
(ii) Evidence of use of: (distance =) area under graph e.g. 1/2bh $(18 \times 0.9)+(0.5 \times 3.1 \times 18)$ C1
44 m A1
(c) (Without seat belt, driver:) e.g. keeps moving (forwards)/does not stop/has inertia/has momentum B1(Driver) hits steering wheel/windscreen/dashboard
2 (a dots farther apart (in 2nd time interval) owtte B1
(b) (i) (average speed $=$) $d \div t$, in any form, e.g. words, symbols, numbers C1
$0.095 \mathrm{~m} / \mathrm{s}$ A1
(ii) (average speed $=0.29 \mathrm{~m} / \mathrm{s}$ B
(c) $(a=)(v-u) \div t$ C1
$=($ candidate's $(\mathbf{b})(\mathbf{i i})-$ candidate's $(\mathbf{b})(\mathbf{i})) \div 0.02$ C1
correct value calculated from candidate's values in (b)(i)(ii), expect $9.5 \mathrm{~m} / \mathrm{s}^{2}$ A1
(a metre rule, tape measure, (surveyor's) laser measurer, trundle wheel tape is too vague, accept rule(r)
(b) $M=\rho V$ in any form or ρV in words, symbols or numbers C1
(mass $=1.2 \times 76.4=) 92 \mathrm{~kg}$ A1
(c) mass (of air) in room decreases B1

$$
\begin{aligned}
& \text { (because) air expands/vol of air increases/density of air decreases/ } \\
& \text { appropriate use of } p V=n R T \text { OR pressure argument e.g. pressure would have } \\
& \text { increased (with constant volume) if mass constant }
\end{aligned}
$$

any ONE from:
some air leaves room
molecules collide harder or more (often)
molecules move faster/have more energy
molecules move further apart NOT molecules expand
4 (a Period: 1.81 s OR 1.8 s as mean value OR 1.8 s as most common reading / the mode
(b) Time a minimum of 2 (successive) oscillations B1
Divide result by the number of oscillations B1
OR
Count no. of oscillations in at least 20 sDivide the time by the number of oscillationsOR Divide no. of oscillations by time and find reciprocal(B1)(B1)
2 of:
Repeat (several times) and find mean Time with reference to fixed / fiducial point or top or bottom of oscillation Check / set zero of stop-watch$\} \quad B 2$Show knowledge of what is meant by one oscillation
[Total: 5]
5 (a) scalar, vector, scalar, vector, scalar B3
(b) (average speed) = distance / time OR 18/1.2 C1
$=15 \mathrm{~m} / \mathrm{s}$ A
(ii) (time =) (total) distance / speed OR 21/15 C1
$=1.4 \mathrm{~s}$ A1
(iii) air resistance / friction / force opposing motion B1
(iv) velocity changes because direction changes B1

