(a	(i)	Straight line	through origin
----	-----	---------------	----------------

1

2

(ii) Strain (energy) OR elastic (energy)

(b) Use of $1/2mv^2$	C1
$0.5 \times 2.5 \times v^2 = 0.48$	C1
$v^2 = 0.48/(0.5 \times 2.5)$ OR $v^2 = 0.384$	C1
$v = 0.62 \mathrm{m/s}$	A1

[Total: 6]

(a	<i>mgh</i> OR 36 × 10 × 2.4 864 J OR Nm (2 or 3 sig. figs.)	[1] [1]
(b)	(<i>P</i> =) <i>Elt</i> in any form, words, symbols or numbers OR 864 / 4.4 196 W OR J/s (2 or 3 sig. figs.)	[1] [1]
(c)	evidence that candidate understands the principle of energy conservation, expressed in words or as an equation (e.g. total energy is constant OR initial energy = final energy) or implied by statement accounting for difference	[1]
	some energy is dissipated into the surroundings OR difference due to increase in internal energy/heating/thermal energy (of belt, motor, surroundings) owtte note: do not accept kinetic energy / sound / friction if no mention of heating	[1]
(d)	increase in potential energy of mass is greater OR work done/energy used (to raise mass) is greater t = E/P OR $P = E/t$ in any form, words or symbols AND power is constant speed reduced / time taken is longer	[1] [1] [1]

[Total: 9]

-

3 (a strain / elastic (potential) (energy)

(b)) (i)	(KE =) $\frac{1}{2}$ m v ² in any form	C1
		1200 J	A1
	(ii)	(G)PE (gained) = KE (lost) in any form	C1
		(G)PE = mgh OR $h = PE \div mg$ in any form	C1
		1.8m e.c.f. from (b)(i)	A1
	(iii)	friction with air OR air resistance OR thermal energy / heat produced/lost	B1
(c)	(i)	limit of proportionality	B1
	(ii)	Hooke's law	B1

4 (a kinetic (energy)

B1

			[Total: 8]
(c)	per	pendicular (to curved path) OR centripetal OR towards centre (of circle)	B1
(i	iii)	(work done against) friction/(air) resistance/drag ACCEPT energy converted to thermal energy	B1
((ii)	work done = kinetic energy OR $\frac{1}{2}mv^2$ seen (v^2 =)2WD ÷ m OR 2 × 1.4 (4) × 10 ⁹ ÷ 4.5 × 10 ⁵ OR 6400 80 m/s ecf (i)	C1 C1 A1
(b)	(i)	(work done =) $F \times x$ in any form: words, symbols, numbers $1.4 \times 10^9 \text{ J}$	C1 A1

MR. AFZAL C	
MR. AFZAL AMIN	
TOCOSE & BLIVEL	

~	(a lin	a_{0} from only one rate to have a 1 AND 4 only	COCSE & BLAVEL
5	(a iii	(a lines from solar energy to boxes 1 AND 4 only	
	lin	es from natural gas to boxes 2 AND 3 only	B1
	• • •	elatively) cheap OR widely available OR can be used on a large scale R always available	B1
	(c) (i)	2.05 × 10 ⁹ N	B1
	(ii)	use of <i>mgh</i> OR weight × <i>h</i> 1.03 × 10 ¹² J NOT ecf from (i)	C1 A1
	(iii)	output energy÷ input energy OR 6.2×10 ¹¹ ÷ 1.2×10 ¹² 0.52 OR 52%	C1 A
			[Total: 8]
6		.p.e.=) mgh OR 75 × 10 × 880 6.6 × 10 ⁵ J/Nm OR 660 kJ/k Nm	C1
	(b)	(work =) Fs/Fd OR 220 × 2800 = 6.2 × 10 ⁵ J/Nm OR 620 kJ/kNm	C1
	(ii)	answer to (a) – answer to (b)(i) e.g. (k.e.=) $6.6 \times 10^5 - 6.2 \times 10^5 = 4.0 \times 10^4 \text{ J OR } 44 \text{ kJ}$ OR $6.6 \times 10^5 - 6.16 \times 10^5 = 4.0 \times 10^4 \text{ J OR } 44 \text{ kJ}$	C1
		go faster by) reduced air resistance/drag/resistive force R to lower centre of mass OR increase stability/balance	
			[Total: 7]