1 (a (i) Straight line through origin
(ii) Strain (energy) OR elastic (energy)
(b) Use of $1 / 2 \mathrm{mv}^{2} \quad \mathrm{C} 1$
$0.5 \times 2.5 \times v^{2}=0.48 \quad$ C1
$v^{2}=0.48 /(0.5 \times 2.5)$ OR $v^{2}=0.384 \quad$ C1
$v=0.62 \mathrm{~m} / \mathrm{s} \quad$ A1
[Total: 6]

2 (a $m g h$ OR $36 \times 10 \times 2.4$ [1]
864 J OR Nm (2 or 3 sig. figs.)
(b) $(P=) E / t$ in any form, words, symbols or numbers OR $864 / 4.4$

196 W OR J/s (2 or 3 sig. figs.)
(c) evidence that candidate understands the principle of energy conservation, expressed in words or as an equation (e.g. total energy is constant OR initial energy = final energy) or implied by statement accounting for difference
some energy is dissipated into the surroundings OR difference due to increase in internal energy/heating/thermal energy (of belt, motor, surroundings) owtte note: do not accept kinetic energy / sound / friction if no mention of heating
(d) increase in potential energy of mass is greater OR work done/energy used (to raise mass) is greater
$t=E / P$ OR $P=E / t$ in any form, words or symbols AND power is constant speed reduced / time taken is longer
(b) (i) ($\mathrm{KE}=)^{1 / 2} m v^{2}$ in any form C1
1200 J A1
(ii) (G)PE (gained) $=\mathrm{KE}$ (lost) in any form C1
(G)PE $=m g h \mathrm{OR} h=\mathrm{PE} \div m g$ in any form C1
1.8 m e.c.f. from (b)(i) A1
(iii) friction with air OR air resistance OR thermal energy / heat produced/lost B1
(c) (i) limit of proportionality B1
(ii) Hooke's law B1
4 (a kinetic (energy) B1
(b) (i) (work done =) $F \times x$ in any form: words, symbols, numbers C1
$1.4 \times 10^{9} \mathrm{~J}$ A1
(ii) work done $=$ kinetic energy $\mathrm{OR} 1 / 2 m v^{2}$ seen C1
$\left(v^{2}=\right) 2 W D \div m$ OR $2 \times 1.4(4) \times 10^{9} \div 4.5 \times 10^{5}$ OR 6400 C1
$80 \mathrm{~m} / \mathrm{s}$ ecf (i) A1
(iii) (work done against) friction/(air) resistance/drag B1
ACCEPT energy converted to thermal energy
(c) perpendicular (to curved path) OR centripetal OR towards centre (of circle) B1

5 (a lines from solar energy to boxes 1 AND 4 only
(b) (relatively) cheap OR widely available OR can be used on a large scale OR always available
(c) (i) $2.05 \times 10^{9} \mathrm{~N} \quad$ B1
(ii) use of $m g h$ OR weight $\times h \quad$ C1
$1.03 \times 10^{12} \mathrm{~J}$ NOT ecf from (i) A1
(iii) output energy \div input energy OR $6.2 \times 10^{11} \div 1.2 \times 10^{12}$ C1 0.52 OR 52 \%
6 (a (g.p.e. $=$) mgh OR $75 \times 10 \times 880$ C1
$=6.6 \times 10^{5} \mathrm{~J} / \mathrm{Nm}$ OR $660 \mathrm{~kJ} / \mathrm{kNm}$
(b) $\quad($ work $=) \mathrm{Fs} /$ Fd OR 220×2800 C1
$=6.2 \times 10^{5} \mathrm{~J} / \mathrm{Nm}$ OR $620 \mathrm{~kJ} / \mathrm{kNm}$
(ii) answer to (a) - answer to (b)(i) C1
e.g. (k.e. $=$) $6.6 \times 10^{5}-6.2 \times 10^{5}=4.0 \times 10^{4} \mathrm{~J}$ OR 44 kJ OR $6.6 \times 10^{5}-6.16 \times 10^{5}=4.0 \times 10^{4} \mathrm{~J}$ OR 44 kJ
(c) (to go faster by) reduced air resistance/drag/resistive force OR to lower centre of mass OR increase stability/balance
[Total: 7]

